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— [ = [P f(x)dx est linéaire
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Ces propriétés suffisent a retrouver la convergence des sommes de Riemann
des fonctions continues vers l'intégrale. En effet, si 'on a
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et si 'on pose S, = > (ax — ar—1)f(xr), on obtient alors
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Comme f est continue sur le compact [a, b], elle y est uniformément continue,
donc wf(0) a une limite nulle lorsque 6 — 0. Ainsi, on obtient la convergence
de S, vers deés que Dy, est de limite nulle. En particulier, on a le
résultat classique

nglfooan<a+ >:/abf(t)dt

pour toute fonction continue sur le compact [a, b].

Malheureusement, l'intégrale de Riemann n’est pas équipée pour traiter
de l'intégrale des fonctions continues sur un intervalle ouvert, bornée ou non.
On fabrique alors une rustine, appelée “intégrale impropre” : si f est une
fonction continue sur [a, b| (avec éventuellement b = +00) telle que la fonction
x — [ f(t) dt admette une limite L quand x tend vers b, on dit alors que L
est l'intégrale de f entre a et b et on note ff f(t) dt = L. Comme pour les
séries, il est fréquent que ’on ne sache pas déterminer la limite. En revanche,
I'existence de la limite peut étre obtenue par



